[AI-RESEARCH][01]在Win 10 + GTX 2080 Ti 環境下,安裝Tensor Flow GPU 運行環境

前言
最近,適逢交接日子,趁著這個機會來記錄一下自己安裝Tensor Flow GPU環境下遇到的一些事情。安裝主要分成以下幾個項目:
1. 確認安裝環境2. 安裝Anaconda
3. 安裝CUDA和cuDNN CUDA 10.0 // cuDNN 7.3.1
4. 安裝tensorflow GPU 本文安裝tensorflow-gpu-1.15.2
5. 測試tensorflow GPU
1. 確認安裝環境,與下載程式
我的運行環境如下
系統:windows 10 1903
CPU:7900X
GPU:GTX 2080 Ti
RAM:64GB
SSD:MX500 1TB
確認顯卡是否支援CUDA
首先需先確認自己的顯卡是否支援CUDA連結如下
CUDA GPUs連結


這邊顯示 RTX 2080 Ti支援CUDA為7.5之後的版本驅動
CUDA 檔案下載
CUDA:(2018) cuda_10.0.130_411.31_win10 載點
(2020) cuda_10.2.89_441.22_win10 強烈建議不要安裝cuda_10.2,
因為到截稿為止,其支援性都來的比cuda_10.0來得差
下載地址: https://developer.nvidia.com/cuda-toolkit-archive


cuDNN檔案下載
cuDNN:(2018) cudnn-forCUDA10.0-windows10-x64-v7.3.1.20 載點
(2020) cudnn-10.2-windows10-x64-v7.6.5.32 強烈建議不要安裝這個
下載地址: https://developer.nvidia.com/rdp/cudnn-archive

檔案需要註冊帳號才能下載
所以需要先註冊一下帳號

2. 安裝Anaconda 載點
安裝程式
Anconda : Anaconda3-2019.07-Windows-x86_64第一項不要打勾,安裝後自行加入環境變數(path)

新增環境變數
# Users\HP是Anaconda3安裝路徑,依你的路徑修改C:\Users\HP\Anaconda3[加入方法]點選電腦右鍵>內容>進階系統設定>環境變數>使用者變數>編輯>開啟環境變數編輯畫面>點新增加入C:\Users\HP\Anaconda3>確定


3. 安裝CUDA和cuDNN
安裝CUDA







安裝cuDNN
cuDNN解壓縮後,裡面有三個資料夾(bin/include/lib),將這三個資料夾複製到剛才安裝CUDA的資料夾覆蓋
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0

檢測CUDA是否成功安裝
開啟Anaconda Prompt(以系統管理員身分執行),測試安裝結果nvcc -V

若有顯示相對應的版本
(比如10.0之類的)
則代表CUDA環境安裝成功
安裝後新增系統變數
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0[加入方法]系統變數欄位>新增>輸入變數名稱(CUDA_HOME)>輸入變數值>確定

新增環境變數,加入方式如上述
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\lib
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin


4. 安裝tensorflow GPU
(1) 創建一個名為tensorflow-gpu且python3.7的虛擬環境
conda create -n tensorflow-gpu pip python=3.7

(2) 開啟虛擬環境
activate tensorflow-gpu(3) 安裝tensorflow-gpu
pip install tensorflow-gpu==1.15.2
5. 測試tensorflow GPU
輸入以下指令測試環境
python -c "from tensorflow.python.client import device_lib;print(device_lib.list_local_devices())"

若有看到自己的設備名稱被程式碼抓到,即代表GPU環境安裝成功
參考資料:
https://zhuanlan.zhihu.com/p/37924625
https://databricks.com/tensorflow/using-a-gpu
https://blog.csdn.net/chengzhibin416/article/details/105213643
留言
張貼留言
歡迎留下您的心靈足跡👍